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Maximum likelihood estimation of the linear factor model for continuous items assumes

normally distributed item scores. We consider deviations from normality by means of a

skew-normally distributed factor model or a quadratic factor model. We show that the

item distributions under a skew-normal factor are equivalent to those under a quadratic

model up to third-order moments. The reverse only holds if the quadratic loadings are

equal to each other and within certain bounds. We illustrate that observed data which

follow any skew-normal factor model can be so well approximated with the quadratic

factor model that the models are empirically indistinguishable, and that the reverse does

not hold in general. The choice between the two models to account for deviations of

normality is illustrated by an empirical example from clinical psychology.

1. Introduction

Maximum likelihood estimation of the linear factormodel for continuous items is based on

the assumption of normally distributed item scores. Non-normality of item scores occurs

in empirical practice, giving a need for alternatives. The normality assumption has been

relaxed in different variants. The least restrictive alternatives are asymptotic distribution-
free factor analysis (Mooijaart, 1985), semi-parametric estimation (Ma & Genton, 2010)

and non-parametricmaximum likelihood estimation (Skrondal &Rabe-Hesketh, 2004, pp.

182–184). Parametric alternatives are, for the case with latent exogenous variables, the

latent moderated structural equations approach (Klein & Moosbrugger, 2000), and, for

the case without such exogenous variables, the structural equation finite mixture model

(Jedidi, Jagpal, & DeSarbo, 1997) and the non-linear factor model (Mooijaart & Bentler,

1986). Non-normality of the residuals can be modelled as a function of the latent trait

score, thereby allowing for heteroscedasticity of the residuals (Hessen & Dolan, 2009).
Recently, the skew-normal factormodel (Molenaar, Dolan, & Verhelst, 2010; Montanari &

Viroli, 2010) has been proposed, which pertains to a linear factor model with

skew-distributed factors.

The parametric approaches to account for non-normality of continuous item

scores have been put into a single framework (Molenaar et al., 2010). Of particular

interest are the two variants that account for deviations from normality of the conditional
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means (i.e., the expected item scores conditioned upon the factor). This is done either

through a quadratic factor model, a non-linear factor model with a polynomial of the

second degree, or through a skew-normal factor model. On the basis of empirical

identification checks, Molenaar et al. (2010) illustrated that the latter two variants cannot
be implemented jointly in a singlemodel. This implies that the quadratic factor model and

the skew-normal factor model are competing in empirical practice. This raises the

questions how they are related at a theoretical level, and how researchers should choose

between them. When would either model be preferred, and when would the choice

between the two models be arbitrary?

We note that maximum likelihood estimation of the linear factor model is asymptot-

ically robust to non-normality (Amemiya&Anderson, 1990; Anderson&Amemiya, 1988).

Further, fitting a linear factor model under normality assumptions to observed data that
follow a skew-normal factor model yields consistent estimates (Shapiro, 1984). In limited

sample sizes, explicitly modelling the skewness may improve the estimates, giving a need

for the skew-normal factor model in empirical practice. When observed data follow a

quadratic factor model, parameter estimates of the linear factor model are biased (Bauer,

2005), rendering the use of the quadratic model necessary for this type of data.

In this study, we consider and analyse the relationship between the quadratic factor

model and the skew-normal factor model as variants to model non-normal conditional

means, for both a single factor and multiple factors. That is, we show that in the case of a
skew-normal factor the two variants are empirically indistinguishable, whereas the

reverse does not generally hold. We discuss the implications of this relationship for the

choice between the variants, and illustrate with an empirical example how one may

model deviations from normality.

2. Modelling non-normal conditional means

2.1. The skew-normal factor model

The skew-normal factormodel has beenproposed to account for non-normally distributed

conditional means. Molenaar et al. (2010) proposed the model for a single factor, and,

independently, Montanari and Viroli (2010) proposed the general model, involving

multiple factors.

We start by introducing the skew-normal factor model for a single factor (Molenaar

et al., 2010). If yi denotes a randomly observed score on item i, the following linear factor
model for yi is specified:

yi ¼ m�i þ k�ig
� þ e�i ; ð1Þ

where m�i is the intercept of item i, k�i the factor loading, g
� the common factor score and

e�i the residual. It is assumed that g� and e�i are independent, and that e�i � Nð0;r2
e� Þ and

g� ~ SN(j, x, f), with location parameter j, scale parameter x, and shape parameter f
(Azzalini, 1985, 1986). The probability density function of the skew-normal factor scores

g� is the following:

f ðxjj;x; fÞ ¼ 2

x
U f

x � j
x

� �
u

x � j
x

� �
; ð2Þ

wherex is the scale parameter,Φ(�) the standardnormal distribution function, f the shape
parameter, j the location parameter and φ(�) the standard normal probability density
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function. Note that the normal distribution is a special case of the skew-normal

distribution, with f = 0.

An extension of the abovemodel is the skew-normal factormodelwithmultiple factors

(Q, with Q ≥ 1; Montanari & Viroli, 2010), which involves the multivariate skew-normal
distribution (Azzalini &Dalla Valle, 1996). Specifically, it involves the (Q 9 1) vectorwith

factor scores g� ~ SN(Ω, a), with the density function

f ðtÞ ¼ 2/Qðt;XÞUða0tÞ; ð3Þ

where /Q(t;Ω) is the Q-dimensional normal density with mean zero and correlation

matrix Ω, and where the vector a contains the shape parameters (related to f in

equation (2)).

The well-known equivalence of the normal factor model after orthogonal and

oblique transformations holds for the multivariate skew-normal distribution as well.

That is, if g� ~ SN(Ω, a), and H is a non-singular (Q 9 Q) matrix such that H0ΩH is a
correlation matrix, then H0g� � SN(H0ΩH, H�1a). Azzalini and Capitanio (1999)

show that for each g� a linear transformation H0g� exists that transforms the

multivariate skew-normal density to a canonical form with Ω = IQ and

a0 ¼ ð a1 0 . . . 0 Þ. Thus, the first random variable is then a one-dimensional

skew-normal with parameters (0, 1, a1), and the other random variables have the N(0,

1) distribution. Moreover, the Q random variables are mutually independent since

their joint density in equation (3) equals the product of their marginal densities. In the

skew-normal factor model with multiple factors, factors are estimated in this canonical
form, in which the factors are orthogonal, and only a single factor has a shape

parameter a 6¼ 0 (Montanari & Viroli, 2010). The model can be fitted by means of

marginal maximum likelihood (Bock & Aitkin, 1981; Molenaar et al., 2010; Montanari

& Viroli, 2010).

2.2. The quadratic factor model

The quadratic factor model is an alternative approach to account for non-normally
distributed conditional means (Molenaar et al., 2010). It is a special case of the non-linear

factor model (McDonald, 1962, 1967; Mooijaart & Bentler, 1986), which we will first

describe.

If yi denotes a randomly observed score on item i, the following non-linear factor

model (McDonald, 1962, 1967; Mooijaart & Bentler, 1986) is specified for yi:

yi ¼ ~mi þ ~kisðgÞ þ ei; ð4Þ

where ~mi is the intercept of item i, ~ki the factor loading,g the common factor score, s(g) a
function of the factor scores and ɛi the residual. It is assumed that ei � Nð0;r2

eÞ,
g�Nðl;r2

gÞ; and that g and ɛi are independent. For s(g) one may specify a polynomial

function

sðgÞ ¼ ci0 þ ci1gþ ci2g
2 þ . . .þ cirg

r: ð5Þ

In the quadratic factor model, the polynomial function is of degree 2. The model for yi
then becomes
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yi ¼ mi þ kið1Þgþ kið2Þg2 þ ei; ð6Þ

where mi is the intercept, andki(x) the factor loading associatedwith the xth power ofg for

the ith item. This model can be fitted using methods based on maximum likelihood

estimation (Harring, Weiss, & Hsu, 2012; Klein & Muth�en, 2007; Rizopoulos & Moustaki,
2008).

2.3. Relationship between the skew-normal factor model and the quadratic factor

model

Wewill now show that the distribution of the items under the quadratic factor model and

the skew-normal factor model is equivalent up to third-order moments, but that the

converse is not generally true.
We consider the skew-normal factor model in equation (1) and the quadratic factor

model in equation (6). By noting that the residuals e�i and ɛi rely on exactly the same

assumptions in both models, and that the distributions of e�i and ɛi are independent of

respectively ðyi � e�i Þ and (yi � ɛi),we can leave the residual variances aside in comparing

themodels. It remains to address the differences in distributions of the conditional means

of the two models.

Under the skew-normal factor model T �
i ; the conditional mean E(yi|g�), equals

T �
i ¼ m�i þ k�ig

�; ð7Þ

where g� ~ SN(j, x, f), with location parameter j, scale parameter x, and shape parameter f.
To identify the model, and without loss of generality, we fix j at 0 and x at 1, so that
T �
i ¼ m�i þ k�ig

� with g� � SN(0, 1, f).
Under the quadratic factor model, Ti, the conditional mean E(yi|g), equals

Ti ¼ mi þ kið1Þgþ kið2Þg2; ð8Þ

where g � Nðl;r2
gÞ: To identify the model, we fix l at 0 and r2

g at 1, so that Ti = mi
+ ki(1)g + ki(2)g

2 with g ~ N(0, 1). To have fully equivalent models, the densities of

Ti and T �
i should be equal.

2.3.1. Approximating the skew-normal factor model by a quadratic factor model

As we will show, the density of Ti (under the quadratic factor model) can be made

equivalent up to its third moment to that of T �
i (under the skew-normal factor model). For

the sake of simplicity,we consider a special case of the skew-normal factormodel forT �
i by

fixing m�i at 0 and k�i at 1, so that T �
i ¼ g�: This can be done without loss of generality,

because any differences in location and scale of Ti and T �
i can be solved through mi, ki(1)

and ki(2).
The question now reduces to whether there exist constants mi, ki(1) and ki(2) which

equate the first three moments of the density of Ti = mi + ki(1)g + ki(2)g
2 (equation 8) to

the density of g�, with g� ~ SN(j, x, f). In Appendix A, it is proved that those constants

exist (omitting the index i in mi, ki(1), ki(2) and Ti to improve readability). To find the

constants mi, ki(1) and ki(2), one first needs to find ki(2) (by solving equation [A6] in

Appendix A for k2 satisfying 1 � c1
2 � 2k2ð2Þ > 0). Then ki(1) and mi can be computed as
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kið1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c21 � 2k2ið2Þ

q
; mi ¼ c1 � kið2Þ:

Further, it is shown in Appendix A that ki(2) and mi are unique, while ki(1) is unique up to

sign. The latter is because the distribution of the termki(1)g inTi is symmetric around zero,

and hence does not depend on the sign of ki(1).
The foregoing implies that the density of T �

i (under the skew-normal factor model) can

be approximated closely by that of Ti (under the quadratic factormodel). To illustrate how
well this approximation is, we consider three cases with f = 1.81, 2.17 and 3.50,

corresponding to a small, medium and large coefficient, respectively (see, e.g., Molenaar

et al., 2010, for an indication of the magnitude of shape parameters). To assess the

closeness of the densities of T �
i and Ti, we use the L1-norm of the difference between their

densities:

fg� � fTi

�� ��
1
¼
Z

fg�ðyÞ � fTiðyÞ
�� ��dy:

The L1-norm of the density differences and the values for mi, ki(1) and ki(2) can be found in
Table 1. As can be seen, the L1-norm is rather small, even for large values of f. The
closeness of the three distributions of T �

i and Ti is further illustrated in Figure 1(a–c). As
can be seen, they are very close.

To further illustrate the closeness of the distributions, Figure 1(d) illustrates the

L1-norm of the density differences for values of f between �3 and 3. As can be seen, the

L1-norm is very small in the range of parameter values of practical interest. This indicates

that a linear model with a skew-normal factor can be well approximated by a quadratic

factor model with a normal factor. This implies that in practice the two models are
empirically indistinguishable from each other. This also explainswhy, as demonstrated by

Molenaar et al. (2010), a quadratic factor model cannot include a skew-normal factor,

because such a model would not be empirically identified.

One may ask how well T �
i could be approximated by a non-linear factor model with a

polynomial function of a degree larger than two.We conjecture that increasing the degree

of the polynomial will improve the approximation. This can be expected because the

skew-normal distribution is completely determined by its moments (Gupta, Nguyen, &

Sanqui, 2004; Lemma 2.1). As a result, if the moments E(Tk) converge to the moments of
E(g�k) for k = 1, 2, . . ., then the distribution of Ti will converge to the distribution of g�

(Billingsley, 1995, Section 30). Therefore, taking the degree of the polynomial Ti to be of a

degree larger than two, more moments could be equated, and if equality holds for more

moments E(Tk) = E(g�k), then the closeness of the distributions T �
i and Ti will be even

better than we already had with a second-degree polynomial.

Table 1. The L1-norm of the density differences of Ti
� and Ti, and the values for mi, ki(1) and ki(2), for

different values of f

f = 1.81 f = 2.17 f = 2.62

L1-norm 0.0271 0.0360 0.0468

mi 0.6507 0.6671 0.6783

ki(1) 0.7125 0.6843 0.6598

ki(2) 0.0477 0.0576 0.0671
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2.3.2. The converse: Approximating the quadratic factor model by a skew-normal factor model

We first consider whether, for a single item i that follows a quadratic factor model, there
exists a skew-normal factor model representation, in terms of equality of the first three

moments of their densities. In Appendix B, it is proved that this cannot be done in all

cases. There are two limiting factors.

First, equating the densities appears to be limited by the range of skewness (and

kurtosis) of the skew-normal distribution (Azzalini, 1985, 2005; Henze, 1986). As a

result, for large values of ki(2) the skewness of Ti is outside the range of the skewness

of T �
i : Consequently, for these values of ki(2), the first three moments of the density

of T �
i cannot be made equal to those of the density of Ti. In Appendix C it is shown

that for small values of ki(2) (roughly between �0.17 and 0.17), for which the

skewness of Ti falls within the range of the skewness of T �
i ; the first three moments

of T �
i can be equated to the first three moments of Ti. Second, the skew-normal

factor model representation only exists if the quadratic terms are equal to each other

for all items.

To further illustrate how well the density of Ti can be approximated by that of T �
i ; if

ki(2) is small and equal across all items, we assess the closeness of the densities using the

L1-norm of their difference. Figure 2 illustrates the L1-norm of the density differences for
values of ki(2) between �0.15 and 0.15. As can be seen, the L1-norm is very small in this

range. This implies that, for those small and equal quadratic terms, the two models

would be empirically indistinguishable from each other, for the parameters of practical

interest.
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Figure 1. Closeness of the distributions ofT �
i and the approximationTi for (a) a small (f = 1.81), (b)

medium (f = 2.17), and (c) large (f = 2.62) skewness coefficient, and (d) the L1-norm of these

density differences for values of f between �3 and 3.
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2.3.3. The multiple factor case

As we showed above, a skew-normal factor from a skew-normal factor model for a single

factor can be very well approximated by a quadratic factor model, and vice versa, if the

quadratic loadings are equal across items loading on that factor andwithin certain bounds.

In Appendix D, it is shown that this relationship between the skew-normal factor model

and the non-linear factor model for a single factor can be generalized to the case with
multiple factors. That is, if the conditional mean in the skew-normal factor model is

T �
i ¼ m�i þ k�ið1Þg

�
1 þ

XQ
q¼2

k�iðqÞg
�
q;

where the Q-dimensional skew-normal distribution is in canonical form (with g�
1 skew-

normal and g�
q � Nð0; 1Þ; q = 2, . . ., Q), then we can find parameters mi, ki(11) and ki(12),

ki(q), q = 2, . . ., Q, such that the non-linear factor model with conditional mean

Ti ¼ mi þ kið11Þg1 þ kið12Þg2
1 þ

PQ
q¼2 kiðqÞgq (with gq, q = 1, . . ., Q, independent N(0, 1)

variables) satisfies EðT �k
i Þ ¼ EðTk

i Þ; for k = 1, 2, 3.

This generalization of the relationship between the non-linear and skew-normal factor

models for a single factor to the case with multiple factors holds because in the canonical
skew-normal factormodelwithmultiple factors, all factors aremutually independent, and

only a single factor has a shape parameter a 6¼ 0 (Montanari & Viroli, 2010). This implies

that, analogous to the single factor case, a skew-normal factor modelwithmultiple factors

can be well approximated by a non-linear factor model, and conversely if the skewness of

Ti does not fall outside the range of the skewness of T �
i and is equal across all items.

2.4. Implications of the relationship between the skew-normal and quadratic factor
model

Aswe showed, a skew-normal factor model can be very well approximated by a quadratic

factor model, and vice versa, if the quadratic loadings are small and equal across items

loading on that factor. From a mathematical point of view, in the conditions mentioned,
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Figure 2. L1-norm of the density differences for values of k(2) between �0.15 and 0.15.

Modelling non-normal data 111



the choice between these parameterizations is arbitrary. In empirical practice, a

skew-normal factor model may be preferred over the quadratic factor model, since one

needs fewer parameters, yielding more efficient estimates. Moreover, one uses linear

relations between the items and the latent trait, which are generally easier to interpret
than non-linear relations. Furthermore, the linear factor model is asymptotically robust to

non-normality (Amemiya & Anderson, 1990; Anderson & Amemiya, 1988). The quadratic

factor model is more flexible than the skew-normal factor model. For example, it allows

for different degrees of skewness of the different items, unlike the skew-normal factor

model. Therefore, the quadratic factor model is capable of describing a wider range of

data.

3. Empirical example

To give an example of how one may choose between the different models in empirical

practice, we present an application for data from the clinical screening instrument

Symptom Checklist-90-Revised (SCL-90-R; Derogatis, 1977, 1994). We analysed data from

a group of psychiatric outpatients who completed the SCL-90-R during admission to a

mental health clinic or university research clinic in the Netherlands. The sample analysed
consists of N = 1,842 psychiatric outpatients with a mean age of 35.2 (SD = 11.0),

consisting of 729males, 1,109 females and four of unknown gender. Further details on the

sample (including exclusion criteria) can be found in Smits, Timmerman, Barelds, and

Meijer (2014). For illustrative purposes, we considered the eight subscale scores of the

SCL-90-R: Agoraphobia, Anxiety, Depression, Somatization, Cognitive Performance

Deficits, Interpersonal Sensitivity, Hostility, and Sleep Difficulties. The analyses were

conducted in Mx (see Molenaar et al., 2010, for details on such analyses and example

scripts).
We fitted a linear factor model, a quadratic factor model and a skew-normal factor

model to these data. The fits of the models are presented in Table 2. We considered the

likelihood ratio test (LRT) to compare the fit of the baseline model (the linear factor

model) to those of the quadratic factor model and the skew-normal factor model. The

latter two were compared using the Akaike information criterion (AIC), Bayesian

information criterion (BIC), sample size adjusted BIC (SABIC) and deviance information

criterion (DIC) fit indices.

As can be seen in Table 2, accounting for non-normality of the data by allowing a non-
linear factor to item relationship improved the fit significantly, v2(8) = 339.83, p < .005.

Table 2. Fit indices for the three models fitted

Factor

model �2 LL df LRT Ddf p-Value AIC BIC SABIC DIC

Linear

(baseline

model)

95,751.29 14,712 66,327.29 �7,431.23 15,938.55 6,088.20

Quadratic 95,411.46 14,704 339.83 8 <.005 66,003.46 �7,571.07 15,786.00 5,941.00

Skew-

normal

95,616.64 14,711 134.65 1 <.005 66,194.64 �7,494.79 15,873.40 6,023.71

Notes. �2LL = �2 times the log-likelihood; LRT = likelihood ratio test statistic between thatmodel

and the baseline model; AIC = Akaike information criterion; BIC = Bayesian information criterion;

SABIC = sample size adjusted BIC; DIC = deviance information criterion.
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This suggests that the assumption of normally distributed subscale scores is violated. If this

non-linearity is not substantial and about equal across subscales, one may as well take

account for this non-linearity by allowing for a skewed distributed factor. As can be seen in

Table 2, the skew-normal factor model fits the data significantly better than the linear
factor model, v2(1) = 134.65, p < .005. However, according to the AIC, BIC, SABIC and

DIC, the quadratic factor model is preferred over the skew-normal factor model, implying

that non-linear scale to factor relationships are needed todescribe thenon-normality in the

data. In Table 3, the parameter estimates of the models are presented. As can be seen, the

quadratic factor loadings ki(2) are relatively large and vary reasonably across subscales,

illustrating the need to model the non-linearity in the data through a quadratic factor

model instead of a skew-normal factor model.

To conclude, the results suggest that for the subscale scores of the SCL-90-R, the
assumption of normally distributed scale scores seemsuntenable but should be accounted

for. Furthermore, the comparative fitmeasures suggest that this non-normality can be best

accounted for by allowing non-linear factor to scale relationships, since the non-linearity

in the data seems to differ too much across subscale scores.

4. Discussion

Deviations from normality of the conditional means can be modelled through either a

skew-normal factor model or a quadratic factor model (Molenaar et al., 2010). In this

paper we showed why these two variants to account for non-normal conditional means

cannot be implemented jointly in a single model. We showed and illustrated that the

quadratic factor model is equivalent to the skew-normal factor model up to third-order

moments, and that the converse is only true if the factor loading of the quadratic term is

small and equal across items. Furthermore, the intimate relationship between the skew-
normal factormodel and the quadratic factor model holds for both the single andmultiple

factor case. This has the following implications for their use in empirical practice.

Observed data that follow any skew-normal factor model can be so well approximated

Table 3. Parameter estimates for the three models fitted

Factor model Ag An De So Co In Ho Sl

Linear

ki(1) 4.32 7.63 12.02 7.71 5.98 11.61 3.27 2.21

mi 12.92 23.89 43.25 25.75 22.23 40.13 11.94 7.84

r2
e 22.95 24.24 57.51 39.01 22.35 81.95 18.81 9.62

Quadratic

ki(1) 4.14 7.47 12.06 7.50 5.94 11.36 3.16 2.21

ki(2) 1.40 1.12 0.25 1.45 0.35 1.65 0.69 0.11

mi 11.52 22.77 43.00 24.29 21.88 38.48 11.24 7.74

r2
e 20.92 23.92 56.18 37.88 22.46 82.11 18.60 9.62

Skew-normal

f 4.39

k�ið1Þ 4.45 7.75 12.02 7.85 6.00 11.73 3.32 2.23

m�i 12.87 23.81 43.13 25.67 22.17 40.01 11.90 7.82

r2
e� 22.28 23.66 60.82 38.14 22.86 82.12 18.74 9.67

Notes. Ag = Agoraphobia; An = Anxiety; De = Depression; So = Somatization; Co = Cognitive

Performance Deficits; In = Interpersonal Sensitivity; Ho = Hostility; Sl = Sleep Difficulties.
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with the quadratic factormodel that themodels are indistinguishable in practice. Further,

observed data that follow a quadratic factormodel, with quadratic terms that are small and

similar across items, can be very well approximated with a skew-normal factor model. In

those conditions where the two models are indistinguishable, the skew-normal factor
model is generally preferred for reasons of parsimony and interpretability of the linear

versus non-linear relationships.

The quadratic factor model is more flexible than the skew-normal factor model. If the

values for the quadratic term are too large or differ toomuch from item to item, then one is

bound to model this non-normality with a quadratic factor model. We recommend

researchers to use a skew-normal factor model in conditions where the two models are

empirically indistinguishable and to move to a quadratic factor model when a more

flexible model is needed.
When observed data comply better with a skew-normal than with a normal factor

model we favour the use of the skew-normal factor model for reasons of interpretability.

Further, though the maximum likelihood estimation of the linear factor model is

asymptotically robust to non-normality (Amemiya & Anderson, 1990; Anderson &

Amemiya, 1988) and yields consistent estimates for data following a skew-normal factor

model (Shapiro, 1984), its behaviourwith limited sample sizesmay be problematic.When

data follow the corresponding quadratic factor model, parameter estimates of the linear

factor model are biased (Bauer, 2005), ruling out the latter option in those cases.
We note that deviations from normality go beyond its skewness, and are aware of the

fact that higher moments of a distribution such as the kurtosis may be of importance as

well. This could be accounted for by including higher-order polynomials in a non-linear

factor model. Further, we note that an extension of the skew-normal distribution exists in

which an additional shape parameter is included such that the range of the skewness of

the distribution is wider (Azzalini, 1985; Henze, 1986). We expect that for such an

extended skew-normal factor model the first three moments can be equated to the first

three moments of the quadratic factor model for a wider range of factor loadings of the
quadratic term. However, such an extended skew-normal factor model will still be less

flexible than the quadratic factor model since the latter features varying quadratic term

loadings from item to item.
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Appendix A

Proposition 1 Letg� have the skew-normal distributionwith parameters (0, 1, f). Let
T = m + k(1)g + k(2)g

2
, where ghas theN(0, 1) distribution, and m, k(1),

k(2) are real constants. Then, for any f, there exist constants m, k(1), k(2)
such that E(g�k) = E(T

k
) for k = 1, 2, 3.

Proof. Themoments of the skew-normal distribution can be found in Corollary 4 of Henze

(1986). For k = 1, we have

Eðg�Þ ¼
ffiffiffi
2

p

r
fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p ¼ c1; EðTÞ ¼ mþ kð2Þ:

Hence, we obtain

m ¼ c1 � kð2Þ: ðA1Þ

For k = 2, we have

Eðg�2Þ ¼ 1; EðT 2Þ ¼ m2 þ 2mkð2Þ þ 3k2ð2Þ þ k2ð1Þ:

Hence, we obtain

m2 þ 2mk 2ð Þ þ 3k22ð Þ þ k21ð Þ � 1 ¼ 0: ðA2Þ

For k = 3, we have

Eðg�3Þ ¼
ffiffiffi
2

p

r
3f

ð1þ f2Þ3=2
1þ 4f2

6

� �
¼ c3;

EðT 3Þ ¼ m3 þ 3m2kð2Þ þ 3mk2ð1Þ þ 9mk2ð2Þ þ 9k2ð1Þkð2Þ þ 15k3ð2Þ:

Hence, we obtain
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m3 þ 3m2kð2Þ þ 3mk2ð1Þ þ 9mk2ð2Þ þ 9k2ð1Þkð2Þ þ 15k3ð2Þ � c3 ¼ 0: ðA3Þ

Next, we substitute the expression (A1) for m into (A2) and (A3). After simplifying, we

obtain the following two equations:

2k2ð2Þ þ k2ð1Þ þ c21 � 1 ¼ 0; ðA4Þ

8k3ð2Þ þ 6c1k
2
ð2Þ þ 6k2ð1Þkð2Þ þ 3c1k

2
ð1Þ þ c31 � c3 ¼ 0: ðA5Þ

Note that (A4) only has a real solution fork(1),k(2) if c21 \ 1:This holds for all f, because it is
equivalent to f2/(1 + f2) < p/2.

Next, we rewrite (A4) as k2ð1Þ ¼ 1� c21 � 2k2ð2Þ and substitute this into (A5). After

simplifying, this yields

�4k3ð2Þ þ 6ð1� c21Þkð2Þ � 2c31 þ 3c1 � c3 ¼ 0: ðA6Þ

We show that this third-degree polynomial in k(2) has three distinct real roots for any
shape parameter f, of which only one root satisfies 1 � c21 � 2k2ð2Þ [ 0 (see below).

Then k(1) and m can be computed as

kð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c21 � 2k2ð2Þ

q
; m ¼ c1 � kð2Þ:

Here, both k(2) and m are unique, while k(1) is unique up to sign. The latter is because the

distribution of the term k(1)g in T does not depend on the sign of k(1) (it is symmetric

around zero).

It remains to show that for any shape parameter f, the third-degree polynomial (A6)

in k(2) has three distinct real roots, and that exactly one root satisfies 1 � c21 � 2k2ð2Þ [ 0.

The discriminant of a general third-degree polynomial ax3 + bx
2 + cx + d is defined as

D ¼ 18abcd � 4b3d þ b2c2 � 4ac3 � 27a2d2:

The polynomial has three distinct roots if and only if D > 0 (see, e.g., Irving, 2004,

Section 10.3).

For the polynomial in (A6), the discriminant depends on f. We have

DðfÞ ¼ 16� 63ð1� c21Þ3 � 27� 16ð�2c31 þ 3c1 � c3Þ2:

Using symbolic computation software, it can be verified that p3(1 + f2)3D(f) equals

3; 456p3þ10; 368ð�2p2 þ p3Þf2 þ 10; 368ð4p� 4p2 þ p3Þf4 þ 864ð�48þ 56p

� 25p2 þ 4p3Þf6:

This sixth-degree polynomial in f has six complex roots. It follows thatD(f) > 0 for any f
if and only ifD(f) > 0 for some f. SinceD(0) = 3,456,we have proved that the polynomial

(A6) has three distinct real roots for any f.
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Setting the derivative of (A6) to zero yields

�12k2ð2Þ þ 6ð1� c21Þ ¼ 0:

Hence, the local minimum and local maximum of (A6) are found at

kðminÞ
ð2Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c21

2

r
; kðmaxÞ

ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c21

2

r
:

Note that 1�c1
2 > 0 for any f, as shown below (A5). Also note that the coefficient of k3ð2Þ in

(A6) is negative, which implies that kðminÞ
ð2Þ \ kðmaxÞ

ð2Þ .

Since the polynomial (A6) has three real roots, there is exactly one root in between

kðminÞ
ð2Þ and kðmaxÞ

ð2Þ : We have

1� c21 � 2 kðminÞ
ð2Þ

� �2
¼ 1� c21 � 2 kðmaxÞ

ð2Þ
� �2

¼ 0:

Hence, for the root k�ð2Þ in between kðminÞ
ð2Þ and kðmaxÞ

ð2Þ it holds that 1� c21 � 2ðk�ð2ÞÞ2 [ 0.

This completes the proof. h

Appendix B

Herewe show that the converse of Proposition 1 is not true. That is, for some constants m,
k(1), k(2), there do not exist values for m�, k� and f that equate the first three moments of

T � = m� + k�g� and T = m + k(1)g + k(2)g
2.

For simplicity, we set m = 0 and k(1) = 1. Note that T� has a skew-normal distribution
with parameters (m�, k�, f). If equating the first three moments of T� and Twere possible,

then their skewnesses would also be equal. That is,

E
T � E Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Tð Þp
 !3

¼ E
T � � E T �ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var T �ð Þp
 !3

:

For the left-hand side, we compute

E
T � E Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Tð Þp
 !3

¼ E T � E Tð Þð Þ3

E T � E Tð Þð Þ2	 
3=2 ¼ 8k3ð2Þ þ 6kð2Þ

2k2ð2Þ þ 1
� �3=2 : ðB1Þ

The skewness of T � only depends on f. From Azzalini (1985) we obtain

E
T � � E T �ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var T �ð Þp
 !3

¼ 4� p
2

� � ffiffiffi
2

p

r
fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p

 !3

1� 2

p
f2

1þ f2

� �� ��3=2

: ðB2Þ

As kð2Þ
�� �� becomes very large, it can be seen that the skewness of T in (B1) converges to

118 Iris A. M. Smits et al.



�
ffiffiffi
8

p
¼ �2

ffiffiffi
2

p
� �2:82:

As fj j becomes very large, the skewness of T� in (B2) converges to

� 4� p
2

� �
2=p

1� 2=p

� �3=2

� �0:9953:

For large values of kð2Þ
�� �� the skewness of T is outside the range of the skewness of T�.

We therefore conclude that the converse statement of Proposition 1 does not hold.

Appendix C

Here we show that if k(2) is small enough, such that the skewness of T is not outside

the range of the skewness of T �, that then the first three moments of T � can be

equated to the first three moments of T. Note that we may set m = 0 and k(1) = 1

without loss of generality, since the location and scaling can be absorbed in the

parameters m� and k�.

Proposition 2 Let T = g + k(2)g
2
, where g has the N(0, 1) distribution and k(2) is a

real constant such that

8k3ð2Þ þ 6kð2Þ

2k2ð2Þ þ 1
� �3=2
�������

�������	
4� p
2

� �
2=p

1� 2=p

� �3=2

: ðC1Þ

Let T� have the skew-normal distribution with parameters (m�, k�, f). Then there exist

parameters m�, k�, f such that E(T �k) = E(T
k
) for k = 1, 2, 3.

Proof. Using Azzalini (1985) for the moments of the skew-normal distribution, we obtain

EðT Þ ¼ kð2Þ; EðT �Þ ¼ m� þ k�
ffiffiffi
2

p

r
fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p ; ðC2Þ

EðT 2Þ ¼ 3k2ð2Þ þ 1; EðT �2Þ ¼ m� þ 2m�k�
ffiffiffi
2

p

r
fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p þ k�2: ðC3Þ

In Appendix B, the skewness of T is given in (B1) and the skewness of T� in (B2).

Since the skewness of T� in (B2) depends only on f, we estimate f by equating the

skewnesses of T and T�. This is possible by the requirement (C1). Let the skewness of

T in (B1) be denoted by c. We substitute d ¼ f=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p
: Setting (B2) equal to c and

solving for d yields
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dj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p=2ð Þ cj j2=3
cj j2=3þ 2� p=2ð Þ2=3

vuut ; ðC4Þ

with d and c having the same sign. Next, we obtain f as f ¼ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
:

When f is known,we equate the first and secondmoments of T and T� to obtain m� and
k�. Since the skewnesses of T and T � are equal, it then also follows that E(T3) = E(T�3).

Setting E(T) = E(T�) in (C2) yields

m� ¼ kð2Þ �
ffiffiffi
2

p

r
dk�: ðC5Þ

Setting E(T2) = E(T �2) in (C3) and substituting (C5) for m� yields, after rewriting,

2k2ð2Þ þ 1 ¼ k�2 1� 2d2

p

� �
:

Since k� is the scaling parameter of a skew-normal distribution, it must be positive.

Hence, we obtain

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2ð2Þ þ 1

1� 2d2=p

s
: ðC6Þ

Once k� is known, we obtain m� from (C5). This completes the proof.

Appendix D

Herewewill show that the demonstrated relation between the skew-normal factormodel

and the quadratic factor model generalizes to the multiple factor case.

Proposition 3 Let g� have a Q-dimensional skew-normal distribution, defined by (5),

in the canonical form with Ω = IQ and a0 ¼ a1 0 . . . 0ð Þ; with

mean vector and covariance matrix (Montanari & Viroli, 2010)

lg� ¼ Eðg�Þ ¼
ffiffiffi
2

p

r
d; Varðg�Þ ¼ X� lgl

0
g�;

where d = (1 + a0Ωa)�1/2Ωa. Let

T � ¼ m� þ k�1g
�
1 þ

XQ
q¼2

k�qg
�
q:

Let
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T ¼ mþ k11g1 þ k12g
2
1 þ

XQ
q¼2

kqgq;

where g1, . . ., gQ are mutually independent N(0, 1) variables. Then, for any a1, m�,
k�1; . . .; k

�
Q there exist constants m, k11, k12, k2, . . ., kQ such that E(T

�k
) = E(T

k
) for

k = 1, 2, 3.

Proof. Without loss of generality we set m� = 0 and k�1 ¼ 1: Note that g�
1 has a one-

dimensional skew-normal distributionwith parameters (0, 1, a1), andg�
q; q = 2, . . .,Q, are

N(0, 1) distributed. Moreover, g�
1; . . .;g

�
Q are mutually independent. Let T �

0 ¼ g�
1 and

T0 ¼ mþ k11g1 þ k12g2
1: From Proposition 1 we know that for any a1 there exist m, k11,

k12, such that EðT �k
0 Þ ¼ EðTk

0 Þ for k = 1, 2, 3. Let m, k11, k12 have these values. Then

EðT �Þ ¼ EðT �
0 Þ ¼ EðT0Þ ¼ EðTÞ holds.

We have

EðT �2Þ ¼EðT �2
0 þ 2T �

0 ðT � � T �
0 Þ þ ðT � � T �

0 Þ2Þ
¼ EðT �2

0 Þ þ 2EðT �
0 ÞEðT � � T �

0 Þ þ EðT � � T �
0 Þ2

¼ EðT 2

0Þ þ
XQ
q¼2

k�2q ;

where we used the independence of T �
0 and T � � T �

0 in the second step, and

EðT � � T �
0 Þ ¼ 0 and EðT �2

0 Þ ¼ EðT 2
0 Þ in the third step. We set kq ¼ k�q for q = 2, . . ., Q.

Then an analogous expansion of E(T2) shows that E(T�2) = E(T2).

We have

EðT �3Þ ¼EðT �3
0 þ 3T �2

0 ðT � � T �
0 Þ þ 3T �

0 ðT � � T �
0 Þ2 þ ðT � � T �

0 Þ3Þ
¼ EðT �3

0 Þ þ 3EðT �2
0 ÞEðT � � T �

0 Þ þ 3EðT �
0 ÞEðT � � T �

0 Þ2 þ EðT � � T �
0 Þ3

¼ EðT 3
0 Þ þ 3EðT0Þ

XQ
q¼2

k�
2

q

 !
;

where we used the independence of T �
0 and T � � T �

0 in the second step, and

EðT � � T �
0 Þ ¼ 0;EðT � � T �

0 Þ3 ¼ 0;EðT �3
0 Þ ¼ EðT 3

0 Þ andEðT �
0 Þ ¼ EðT0Þ in the third step. As

above, an analogous expansion of E(T3) shows that E(T�3) = E(T3). This completes the

proof. h

As in the univariate case, the full converse result of Proposition 3 does not hold, but a

partial converse result is possible under a condition on the skewness of T. This result is

omitted here.
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