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Maximum likelihood estimation of the linear factor model for continuous items assumes
normally distributed item scores. We consider deviations from normality by means of a
skew-normally distributed factor model or a quadratic factor model. We show that the
item distributions under a skew-normal factor are equivalent to those under a quadratic
model up to third-order moments. The reverse only holds if the quadratic loadings are
equal to each other and within certain bounds. We illustrate that observed data which
follow any skew-normal factor model can be so well approximated with the quadratic
factor model that the models are empirically indistinguishable, and that the reverse does
not hold in general. The choice between the two models to account for deviations of
normality is illustrated by an empirical example from clinical psychology.

I. Introduction

Maximum likelihood estimation of the linear factor model for continuous items is based on
the assumption of normally distributed item scores. Non-normality of item scores occurs
in empirical practice, giving a need for alternatives. The normality assumption has been
relaxed in different variants. The least restrictive alternatives are asymptotic distribution-
free factor analysis (Mooijaart, 1985), semi-parametric estimation (Ma & Genton, 2010)
and non-parametric maximum likelihood estimation (Skrondal & Rabe-Hesketh, 2004, pp.
182-184). Parametric alternatives are, for the case with latent exogenous variables, the
latent moderated structural equations approach (Klein & Moosbrugger, 2000), and, for
the case without such exogenous variables, the structural equation finite mixture model
(Jedidi, Jagpal, & DeSarbo, 1997) and the non-linear factor model (Mooijaart & Bentler,
1986). Non-normality of the residuals can be modelled as a function of the latent trait
score, thereby allowing for heteroscedasticity of the residuals (Hessen & Dolan, 2009).
Recently, the skew-normal factor model (Molenaar, Dolan, & Verhelst, 2010; Montanari &
Viroli, 2010) has been proposed, which pertains to a linear factor model with
skew-distributed factors.

The parametric approaches to account for non-normality of continuous item
scores have been put into a single framework (Molenaar et al., 2010). Of particular
interest are the two variants that account for deviations from normality of the conditional
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means (i.e., the expected item scores conditioned upon the factor). This is done either
through a quadratic factor model, a non-linear factor model with a polynomial of the
second degree, or through a skew-normal factor model. On the basis of empirical
identification checks, Molenaar et al. (2010) illustrated that the latter two variants cannot
be implemented jointly in a single model. This implies that the quadratic factor model and
the skew-normal factor model are competing in empirical practice. This raises the
questions how they are related at a theoretical level, and how researchers should choose
between them. When would either model be preferred, and when would the choice
between the two models be arbitrary?

We note that maximum likelihood estimation of the linear factor model is asymptot-
ically robust to non-normality (Amemiya & Anderson, 1990; Anderson & Amemiya, 1988).
Further, fitting a linear factor model under normality assumptions to observed data that
follow a skew-normal factor model yields consistent estimates (Shapiro, 1984). In limited
sample sizes, explicitly modelling the skewness may improve the estimates, giving a need
for the skew-normal factor model in empirical practice. When observed data follow a
quadratic factor model, parameter estimates of the linear factor model are biased (Bauer,
2005), rendering the use of the quadratic model necessary for this type of data.

In this study, we consider and analyse the relationship between the quadratic factor
model and the skew-normal factor model as variants to model non-normal conditional
means, for both a single factor and multiple factors. That is, we show that in the case of a
skew-normal factor the two variants are empirically indistinguishable, whereas the
reverse does not generally hold. We discuss the implications of this relationship for the
choice between the variants, and illustrate with an empirical example how one may
model deviations from normality.

2. Modelling non-normal conditional means

2.1. The skew-normal factor model
The skew-normal factor model has been proposed to account for non-normally distributed
conditional means. Molenaar et al. (2010) proposed the model for a single factor, and,
independently, Montanari and Viroli (2010) proposed the general model, involving
multiple factors.

We start by introducing the skew-normal factor model for a single factor (Molenaar
et al.,2010).If y, denotes a randomly observed score on item 7, the following linear factor
model for y; is specified:

Yi=Vi+Mn"+g, (1)

where v; is the intercept of item 7, A; the factor loading, n* the common factor score and
&/ the residual. It is assumed that n* and €} are independent, and that €] ~ N(0,c2) and
n* ~ SN(x, o, {), with location parameter «, scale parameter ®, and shape parameter
(Azzalini, 1985, 1986). The probability density function of the skew-normal factor scores
n* is the following:

fle 0,0 = 20t 5o (), )

® (O]

where o is the scale parameter, @(-) the standard normal distribution function, { the shape
parameter, K the location parameter and ¢(-) the standard normal probability density
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function. Note that the normal distribution is a special case of the skew-normal
distribution, with { = 0.

An extension of the above model is the skew-normal factor model with multiple factors
(Q, with Q > 1; Montanari & Viroli, 2010), which involves the multivariate skew-normal
distribution (Azzalini & Dalla Valle, 1996). Specifically, it involves the (Q x 1) vector with
factor scores N* ~ SN(Q, o), with the density function

J(#) =20 (6Q)0(o't), (3)

where ¢o(t;€)) is the Q-dimensional normal density with mean zero and correlation
matrix Q, and where the vector o contains the shape parameters (related to { in
equation (2)).

The well-known equivalence of the normal factor model after orthogonal and
oblique transformations holds for the multivariate skew-normal distribution as well.
That is, if n* ~ SN(Q, &), and H is a non-singular (Q x Q) matrix such that H'QH is a
correlation matrix, then H'N* ~ SNGH'QH, H 'a). Azzalini and Capitanio (1999)
show that for each n* a linear transformation H'M* exists that transforms the
multivariate skew-normal density to a canonical form with Q =1, and
o =(oy O ... 0). Thus, the first random variable is then a one-dimensional
skew-normal with parameters (0, 1, a;), and the other random variables have the N(O,
1) distribution. Moreover, the Q random variables are mutually independent since
their joint density in equation (3) equals the product of their marginal densities. In the
skew-normal factor model with multiple factors, factors are estimated in this canonical
form, in which the factors are orthogonal, and only a single factor has a shape
parameter o # 0 (Montanari & Viroli, 2010). The model can be fitted by means of
marginal maximum likelihood (Bock & Aitkin, 1981; Molenaar et al., 2010; Montanari
& Viroli, 2010).

2.2. The quadratic factor model
The quadratic factor model is an alternative approach to account for non-normally
distributed conditional means (Molenaar et al., 2010). It is a special case of the non-linear
factor model (McDonald, 1962, 1967; Mooijaart & Bentler, 1986), which we will first
describe.

If y; denotes a randomly observed score on item 7, the following non-linear factor
model (McDonald, 1962, 1967; Mooijaart & Bentler, 1986) is specified for y;:

Yi=Vi+ 71:'5(11) + &, (4)

where V; is the intercept of item 7, Xi the factor loading, n the common factor score, s(n) a
function of the factor scores and ¢, the residual. It is assumed that & ~ N(0,c2),
n~N (W, Gfl)7 and that n and ¢, are independent. For s(1) one may specify a polynomial
function

s() =7 +vam + Yz’znz +. v (5)

In the quadratic factor model, the polynomial function is of degree 2. The model for y;
then becomes



108 Iris A. M. Smits et al.
Vi = Vi+hpn+ M(zmz + &, (6)

where v;is the intercept, and A, the factor loading associated with the xth power of  for
the 7th item. This model can be fitted using methods based on maximum likelihood
estimation (Harring, Weiss, & Hsu, 2012; Klein & Muthén, 2007; Rizopoulos & Moustaki,
2008).

2.3. Relationship between the skew-normal factor model and the quadratic factor
model

We will now show that the distribution of the items under the quadratic factor model and
the skew-normal factor model is equivalent up to third-order moments, but that the
converse is not generally true.

We consider the skew-normal factor model in equation (1) and the quadratic factor
model in equation (6). By noting that the residuals &; and ¢, rely on exactly the same
assumptions in both models, and that the distributions of €; and ¢, are independent of
respectively (y; — s}‘) and (y; — €, we canleave the residual variances aside in comparing
the models. It remains to address the differences in distributions of the conditional means
of the two models.

Under the skew-normal factor model 7}, the conditional mean E(y;In™), equals

T; =i+ a, 7)

where n* ~ SN(k, o, {), with location parameter k, scale parameter m, and shape parameter (.
To identify the model, and without loss of generality, we fix k¥ at 0 and ® at 1, so that
T =vi+An"withn* ~ SN, 1, §).

Under the quadratic factor model, 7;, the conditional mean E(y;|n), equals

T; = vi + by + Az (8)

where 1 ~ N(u,07). To identify the model, we fix p at 0 and o7 at 1, so that 7; = v;
+ Niepn + 7»,-(2)112 with n ~ N(0, 1). To have fully equivalent models, the densities of
T;and T; should be equal.

2.3.1. Approximating the skew-normal factor model by a quadratic factor model
As we will show, the density of 7; (under the quadratic factor model) can be made
equivalent up to its third moment to that of 7; (under the skew-normal factor model). For
the sake of simplicity, we consider a special case of the skew-normal factor model for 7} by
fixing v; at 0 and A at 1, so that 7; = n*. This can be done without loss of generality,
because any differences in location and scale of 7; and 7} can be solved through v;, ;1
and A2y

The question now reduces to whether there exist constants v;, A,y and A, which
equate the first three moments of the density of 7; = v; + Ajqyn + Xi(z)nz (equation 8) to
the density of n*, with n* ~ SN(x, o, ). In Appendix A, it is proved that those constants
exist (omitting the index 7 in v;, A1y, Ai2y and 7 to improve readability). To find the
constants v;, Ay, and Ay, one first needs to find A, (by solving equation [A0] in
Appendix A for ), satisfying 1 — ¢,? — 2%?2) > 0). Then A,y and v, can be computed as
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7\.,<1> =4/1— C% — 27\.?(2), Vi =¢C€ — 7\'i(Z)-

Further, it is shown in Appendix A that 2,y and v, are unique, while ¢, is unique up to
sign. The latter is because the distribution of the term A,y in 7;is symmetric around zero,
and hence does not depend on the sign of A;.

The foregoing implies that the density of 7} (under the skew-normal factor model) can
be approximated closely by that of 7; (under the quadratic factor model). To illustrate how
well this approximation is, we consider three cases with { = 1.81, 2.17 and 3.50,
corresponding to a small, medium and large coefficient, respectively (see, e.g., Molenaar
et al., 2010, for an indication of the magnitude of shape parameters). To assess the
closeness of the densities of 7, and T, we use the L;-norm of the difference between their
densities:

e =silli= [ V) =]

The L,-norm of the density differences and the values for v;, 1,1, and A,y can be found in
Table 1. As can be seen, the L;-norm is rather small, even for large values of (. The
closeness of the three distributions of 7, and 7} is further illustrated in Figure 1(a—c). As
can be seen, they are very close.

To further illustrate the closeness of the distributions, Figure 1(d) illustrates the
Ly-norm of the density differences for values of { between —3 and 3. As can be seen, the
Li-norm is very small in the range of parameter values of practical interest. This indicates
that a linear model with a skew-normal factor can be well approximated by a quadratic
factor model with a normal factor. This implies that in practice the two models are
empirically indistinguishable from each other. This also explains why, as demonstrated by
Molenaar et al. (2010), a quadratic factor model cannot include a skew-normal factor,
because such a model would not be empirically identified.

One may ask how well T could be approximated by a non-linear factor model with a
polynomial function of a degree larger than two. We conjecture that increasing the degree
of the polynomial will improve the approximation. This can be expected because the
skew-normal distribution is completely determined by its moments (Gupta, Nguyen, &
Sanqui, 2004; Lemma 2.1). As a result, if the moments E(T" k‘) converge to the moments of
E(n*k) fork =1, 2, ..., then the distribution of 7; will converge to the distribution of n*
(Billingsley, 1995, Section 30). Therefore, taking the degree of the polynomial 7; to be of a
degree larger than two, more moments could be equated, and if equality holds for more
moments E(T®) = E(n*k), then the closeness of the distributions 7} and 7; will be even
better than we already had with a second-degree polynomial.

Table 1. The L,-norm of the density differences of 7; and T}, and the values for v;, A1, and A2y, for
different values of

(=181 (=217 (=262
L-norm 0.0271 0.0360 0.0468
v; 0.6507 0.6671 0.6783
Mt 0.7125 0.6843 0.6598

M2y 0.0477 0.0576 0.0671
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(a) Closeness of the densities of T* (b) Closeness of the densities of T*
and the approximation T for C =1.81 and the approximation T for C =217
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Figure 1. Closeness of the distributions of 7} and the approximation 7;for (a) asmall ({ = 1.81), (b)
medium ({ = 2.17), and (¢) large ({ = 2.62) skewness coefficient, and (d) the L;-norm of these
density differences for values of { between —3 and 3.

2.3.2. The converse: Approximating the quadratic factor model by a skew-normal factor model

We first consider whether, for a single item 7 that follows a quadratic factor model, there
exists a skew-normal factor model representation, in terms of equality of the first three
moments of their densities. In Appendix B, it is proved that this cannot be done in all
cases. There are two limiting factors.

First, equating the densities appears to be limited by the range of skewness (and
kurtosis) of the skew-normal distribution (Azzalini, 1985, 2005; Henze, 1986). As a
result, for large values of A;, the skewness of T; is outside the range of the skewness
of T;. Consequently, for these values of Az, the first three moments of the density
of T} cannot be made equal to those of the density of T;. In Appendix C it is shown
that for small values of A5, (roughly between —0.17 and 0.17), for which the
skewness of T; falls within the range of the skewness of 7}, the first three moments
of T; can be equated to the first three moments of 7, Second, the skew-normal
factor model representation only exists if the quadratic terms are equal to each other
for all items.

To further illustrate how well the density of T; can be approximated by that of T}, if
Aic2y is small and equal across all items, we assess the closeness of the densities using the
Li-norm of their difference. Figure 2 illustrates the L;-norm of the density differences for
values of A, between —0.15 and 0.15. As can be seen, the L;-norm is very small in this
range. This implies that, for those small and equal quadratic terms, the two models
would be empirically indistinguishable from each other, for the parameters of practical

interest.
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Figure 2. L;-norm of the density differences for values of A, between —0.15 and 0.15.

2.3.3. The multiple factor case

As we showed above, a skew-normal factor from a skew-normal factor model for a single
factor can be very well approximated by a quadratic factor model, and vice versa, if the
quadratic loadings are equal across items loading on that factor and within certain bounds.
In Appendix D, it is shown that this relationship between the skew-normal factor model
and the non-linear factor model for a single factor can be generalized to the case with
multiple factors. That is, if the conditional mean in the skew-normal factor model is

Q
T] =i Kt D kg
q=2

where the Q-dimensional skew-normal distribution is in canonical form (with n;j skew-

normal and 0y ~ N(0,1),q = 2,...,Q), then we can find parameters v, A1y and A2,
ki(q), q =2, ..., O, such that the non-linear factor model with conditional mean
Tr = vi+ MM + ki3 + 3o, ki, (With g, g = 1, .., Q, independent N(0, 1)
variables) satisfies E(T;*) = E(T¥),fork =1, 2, 3.

This generalization of the relationship between the non-linear and skew-normal factor
models for a single factor to the case with multiple factors holds because in the canonical
skew-normal factor model with multiple factors, all factors are mutually independent, and
only a single factor has a shape parameter oo # 0 (Montanari & Viroli, 2010). This implies
that, analogous to the single factor case, a skew-normal factor model with multiple factors
can be well approximated by a non-linear factor model, and conversely if the skewness of
T; does not fall outside the range of the skewness of T} and is equal across all items.

2.4. Implications of the relationship between the skew-normal and quadratic factor
model

As we showed, a skew-normal factor model can be very well approximated by a quadratic
factor model, and vice versa, if the quadratic loadings are small and equal across items
loading on that factor. From a mathematical point of view, in the conditions mentioned,
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the choice between these parameterizations is arbitrary. In empirical practice, a
skew-normal factor model may be preferred over the quadratic factor model, since one
needs fewer parameters, yielding more efficient estimates. Moreover, one uses linear
relations between the items and the latent trait, which are generally easier to interpret
than non-linear relations. Furthermore, the linear factor model is asymptotically robust to
non-normality (Amemiya & Anderson, 1990; Anderson & Amemiya, 1988). The quadratic
factor model is more flexible than the skew-normal factor model. For example, it allows
for different degrees of skewness of the different items, unlike the skew-normal factor
model. Therefore, the quadratic factor model is capable of describing a wider range of
data.

3. Empirical example

To give an example of how one may choose between the different models in empirical
practice, we present an application for data from the clinical screening instrument
Symptom Checklist-90-Revised (SCL-90-R; Derogatis, 1977, 1994). We analysed data from
a group of psychiatric outpatients who completed the SCL-90-R during admission to a
mental health clinic or university research clinic in the Netherlands. The sample analysed
consists of N = 1,842 psychiatric outpatients with a mean age of 35.2 (§D = 11.0),
consisting of 729 males, 1,109 females and four of unknown gender. Further details on the
sample (including exclusion criteria) can be found in Smits, Timmerman, Barelds, and
Meijer (2014). For illustrative purposes, we considered the eight subscale scores of the
SCL-90-R: Agoraphobia, Anxiety, Depression, Somatization, Cognitive Performance
Deficits, Interpersonal Sensitivity, Hostility, and Sleep Difficulties. The analyses were
conducted in Mx (see Molenaar et al., 2010, for details on such analyses and example
scripts).

We fitted a linear factor model, a quadratic factor model and a skew-normal factor
model to these data. The fits of the models are presented in Table 2. We considered the
likelihood ratio test (LRT) to compare the fit of the baseline model (the linear factor
model) to those of the quadratic factor model and the skew-normal factor model. The
latter two were compared using the Akaike information criterion (AIC), Bayesian
information criterion (BIC), sample size adjusted BIC (SABIC) and deviance information
criterion (DIC) fit indices.

As can be seen in Table 2, accounting for non-normality of the data by allowing a non-
linear factor to item relationship improved the fit significantly, x*(8) = 339.83, p < .005.

Table 2. Fit indices for the three models fitted

Factor

model —2LL df LRT Adf  p-Value AIC BIC SABIC DIC
Linear 95,751.29 14,712 66,327.29 —7,431.23 15,938.55 6,088.20
(baseline

model)

Quadratic  95,411.46 14,704 339.83 8 <.005 66,003.46 —7,571.07 15,786.00 5,941.00
Skew- 95,616.64 14,711 134.65 1 <005 606,194.64 —7,494.79 15,873.40 6,023.71
normal

Notes. —2 LL = —2times the log-likelihood; LRT = likelihood ratio test statistic between that model
and the baseline model; AIC = Akaike information criterion; BIC = Bayesian information criterion;
SABIC = sample size adjusted BIC; DIC = deviance information criterion.
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This suggests that the assumption of normally distributed subscale scores is violated. If this
non-linearity is not substantial and about equal across subscales, one may as well take
account for this non-linearity by allowing for a skewed distributed factor. As can be seen in
Table 2, the skew-normal factor model fits the data significantly better than the linear
factor model, (1) = 134.65, p < .005. However, according to the AIC, BIC, SABIC and
DIC, the quadratic factor model is preferred over the skew-normal factor model, implying
that non-linear scale to factor relationships are needed to describe the non-normality in the
data. In Table 3, the parameter estimates of the models are presented. As can be seen, the
quadratic factor loadings A, are relatively large and vary reasonably across subscales,
illustrating the need to model the non-linearity in the data through a quadratic factor
model instead of a skew-normal factor model.

To conclude, the results suggest that for the subscale scores of the SCL-90-R, the
assumption of normally distributed scale scores seems untenable but should be accounted
for. Furthermore, the comparative fit measures suggest that this non-normality can be best
accounted for by allowing non-linear factor to scale relationships, since the non-linearity
in the data seems to differ too much across subscale scores.

4. Discussion

Deviations from normality of the conditional means can be modelled through either a
skew-normal factor model or a quadratic factor model (Molenaar et al., 2010). In this
paper we showed why these two variants to account for non-normal conditional means
cannot be implemented jointly in a single model. We showed and illustrated that the
quadratic factor model is equivalent to the skew-normal factor model up to third-order
moments, and that the converse is only true if the factor loading of the quadratic term is
small and equal across items. Furthermore, the intimate relationship between the skew-
normal factor model and the quadratic factor model holds for both the single and multiple
factor case. This has the following implications for their use in empirical practice.
Observed data that follow any skew-normal factor model can be so well approximated

Table 3. Parameter estimates for the three models fitted

Factor model Ag An De So Co In Ho SL
Linear
Nicty 4.32 7.63 12.02 7.71 5.98 11.61 3.27 2.21
V; 12.92 23.89 43.25 25.75 22.23 40.13 11.94 7.84
o’ 22.95 24.24 57.51 39.01 22.35 81.95 18.81 9.62
Quadratic
Nict 4.14 7.47 12.06 7.50 5.94 11.36 3.16 2.21
) 1.40 1.12 0.25 1.45 0.35 1.65 0.69 0.11
V; 11.52 22.77 43.00 24.29 21.88 38.48 11.24 7.74
cg 20.92 23.92 56.18 37.88 22.46 82.11 18.60 9.62
Skew-normal
4 439
ij 4.45 7.75 12.02 7.85 6.00 11.73 3.32 2.23
A 12.87 23.81 43.13 25.67 2217 40.01 11.90 7.82
G2 22.28 23.66 60.82 38.14 22.86 82.12 18.74 9.67

)

Notes. Ag = Agoraphobia; An = Anxiety; De = Depression; So = Somatization; Co = Cognitive
Performance Deficits; In = Interpersonal Sensitivity; Ho = Hostility; S1 = Sleep Difficulties.
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with the quadratic factor model that the models are indistinguishable in practice. Further,
observed data that follow a quadratic factor model, with quadratic terms that are small and
similar across items, can be very well approximated with a skew-normal factor model. In
those conditions where the two models are indistinguishable, the skew-normal factor
model is generally preferred for reasons of parsimony and interpretability of the linear
versus non-linear relationships.

The quadratic factor model is more flexible than the skew-normal factor model. If the
values for the quadratic term are too large or differ too much from item to item, then one is
bound to model this non-normality with a quadratic factor model. We recommend
researchers to use a skew-normal factor model in conditions where the two models are
empirically indistinguishable and to move to a quadratic factor model when a more
flexible model is needed.

When observed data comply better with a skew-normal than with a normal factor
model we favour the use of the skew-normal factor model for reasons of interpretability.
Further, though the maximum likelihood estimation of the linear factor model is
asymptotically robust to non-normality (Amemiya & Anderson, 1990; Anderson &
Amemiya, 1988) and yields consistent estimates for data following a skew-normal factor
model (Shapiro, 1984), its behaviour with limited sample sizes may be problematic. When
data follow the corresponding quadratic factor model, parameter estimates of the linear
factor model are biased (Bauer, 2005), ruling out the latter option in those cases.

We note that deviations from normality go beyond its skewness, and are aware of the
fact that higher moments of a distribution such as the kurtosis may be of importance as
well. This could be accounted for by including higher-order polynomials in a non-linear
factor model. Further, we note that an extension of the skew-normal distribution exists in
which an additional shape parameter is included such that the range of the skewness of
the distribution is wider (Azzalini, 1985; Henze, 1986). We expect that for such an
extended skew-normal factor model the first three moments can be equated to the first
three moments of the quadratic factor model for a wider range of factor loadings of the
quadratic term. However, such an extended skew-normal factor model will still be less
flexible than the quadratic factor model since the latter features varying quadratic term
loadings from item to item.
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Appendix A
Proposition 1 Let n* bhave the skew-normal distribution with parameters (0, 1, 0). Let
T=v+hpn+ 7»(2)112, wheren bas the N(0, 1) distribution, and v, h,

A2y are real constants. Then, for any (, there exist constants v, hc, ko
such that EM**) = E(T®) fork = 1, 2, 3.

Proof. The moments of the skew-normal distribution can be found in Corollary 4 of Henze
(1986). For k = 1, we have

E(’) = \/%\/%:? =c, E(T)=Vv+a:
Hence, we obtain
V=c1—Ag)- (A1)
For & = 2, we have
EM?) =1, E(I%) =V +2vig) + 3)%,) + A
Hence, we obtain
V2 2V + 30y + A7) — 1 =0. (A2)

For & = 3, we have

. 2 3 40
E(M”) :\/;W (1 +?> = ¢3,

E(T?) = V* + 32 A + 3VALy) + OVAL,) + 9AF k) + 1500,

Hence, we obtain
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V3 3V o) + 3V + VAL, + Oy Ay + 15K, — ¢ = 0. (A3)

Next, we substitute the expression (A1) for v into (A2) and (A3). After simplifying, we
obtain the following two equations:

200 + M)+ —1=0, (A4)

87»(32) + 661)\?2) + 67\,<21>7» + 3017» +¢ —c;3=0. (A5)

Note that (A4) only has a real solution for Ay, A if c; < 1. This holds for all {, because it is
equivalent to (*/(1 + (%) < m/2.

Next, we rewrite (A4) as 7»?1) =1—c— 2l(22) and substitute this into (AS5). After
simplifying, this yields

—405 +6(1 — ¢} k) — 26} + 3¢ —¢3 = 0. (AG)

We show that this third-degree polynomial in A, has three distinct real roots for any
shape parameter {, of which only one root satisfies 1 — ¢? — 2%2 > 0 (see below).
Then A, and v can be computed as

My = /1 —¢f — 27»%2), V=rc; — A

Here, both A, and v are unique, while A, is unique up to sign. The latter is because the
distribution of the term A4yn in 7" does not depend on the sign of Ay, (it is symmetric
around zero).

It remains to show that for any shape parameter {, the third-degree polynormal (A6)
in A, has three distinct real roots, and that exactly one root satlsﬁes 1 - 27\2

The discriminant of a general third-degree polynomial ax® + bx” + cx + dis deﬁned as

D = 18abcd — 4b°d + b*c? — dac® — 27a*d>.
The polynomial has three distinct roots if and only if D > 0 (see, e.g., Irving, 2004,
Section 10.3).
For the polynomial in (A6), the discriminant depends on {. We have
D(L) =16 x 6°(1 — ¢2)> — 27 x 16(—2¢ + 3¢, — ¢3)°.

Using symbolic computation software, it can be verified that n*(1 + {*>D(0) equals

3,456m°410,368(—21% 4+ )% + 10,368(4n — 41> + 1)t + 864(—48 + 567
—251% + 471%)°.
This sixth-degree polynomial in { has six complex roots. It follows that D(() > 0 for any {

ifand only if D(0) > 0 for some (. Since D(0) = 3,456, we have proved that the polynomial
(A0) has three distinct real roots for any C.
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Setting the derivative of (AG) to zero yields
—12)%,) + 6(1 = ¢f) = 0.
Hence, the local minimum and local maximum of (A6) are found at

2 2
(min) 1—o¢ max) _ [1—¢
7\'(2) o 2 7L(2) o 2

Note that 1— cl > 0 for any {, as shown below (AS) Also note that the coefficient of kj
(AG) is negative, which implies that X(mm) <k (max)
Since the polynomial (A6) has three real roots there is exactly one root in between

kg;‘n nd k(max) We have

. 2 2
1-¢2 - z(xg‘“)) =1-c - 2(%52“;"‘)) =o.

Hence, for the root 1, in between 7» " and 7» max it holds that 1 — ¢} — 2(A;)* > 0.
This completes the proof. O

Appendix B

Here we show that the converse of Proposition 1 is not true. That is, for some constants v,
Ay M2y, there do not exist values for v¥, A" and  that equate the first three moments of
T = v+ Mn*and T = v + hoyn + Aayn’

For simplicity, we set v = 0 and A¢;, = 1. Note that 7* has a skew-normal distribution
with parameters (v*, A", 0). If equating the first three moments of 7* and 7' were possible,
then their skewnesses would also be equal. That is,

E(T - E(T)) 3: E(T* - E(T*)> 3.
Var(T) Var(T*)

For the left-hand side, we compute

E(T—E(T))L BI—E(r))® _ 8k + 6k
Var(T)) (B(r - B(1)?)*" (27‘?2) +1)S/2

The skewness of T* only depends on {. From Azzalini (1985) we obtain

() - (et (365D

As ’k(z) | becomes very large, it can be seen that the skewness of T'in (B1) converges to
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+V8 = +2V2 ~ £2.82.

As |{| becomes very large, the skewness of 7 in (B2) converges to

4—m 2/ \¥?
+ ~ 10. .
( . )(1_2/n> 0.9953

For large values of |7»(2) ’ the skewness of T'is outside the range of the skewness of 7.
We therefore conclude that the converse statement of Proposition 1 does not hold.

Appendix C

Here we show that if A, is small enough, such that the skewness of T is not outside
the range of the skewness of T, that then the first three moments of 7% can be
equated to the first three moments of 7. Note that we may set v =0 and Ay =1
without loss of generality, since the location and scaling can be absorbed in the
parameters v* and A*.

Proposition 2 LetT=n + X(Z)nz, where 1 bas the N(0, 1) distribution and \») is a
real constant such that

By +6he) | _ (d—m\( 2/n \*” 1)
5 321 =\ 2 1-2/n)
<2x(2) + 1)

Let T* have the skew-normal distribution with parameters (v¥, 1*, ). Then there exist
parameters v*, )*, { such that E(T**) = E(Tk)for k=123

Proof. Using Azzalini (1985) for the moments of the skew-normal distribution, we obtain

E(T)Z)L(z), E(T*)ZV*—I—)L*\/%%, (C2)

2 g
E(T?) =30\, +1, E(I?) =V + 2v*x*\/:—+ A2 Cc3
(%) 2) (17%) T\/1+ (C3)

In Appendix B, the skewness of T'is given in (B1) and the skewness of 7 in (B2).
Since the skewness of T* in (B2) depends only on {, we estimate { by equating the
skewnesses of T'and 7. This is possible by the requirement (C1). Let the skewness of
T in (B1) be denoted by y. We substitute & = {/+/1 + {*. Setting (B2) equal to y and
solving for o yields
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(n/2)]y[*?

o = ,
. Y7342 - m/2)*?

(C4)

with 8 and y having the same sign. Next, we obtain { as { = §/V'1 — &%
When { is known, we equate the first and second moments of T'and 7™ to obtain v* and
\*. Since the skewnesses of T'and 7™ are equal, it then also follows that E(T®) = E(T*>).
Setting E(T) = E(T™) in (C2) yields

2

Setting E(T 2y = E(T*%) in (C3) and substituting (C5) for v* yields, after rewriting,

. 282

Since X" is the scaling parameter of a skew-normal distribution, it must be positive.
Hence, we obtain

2075, + 1
Y - (C6)
1-28"/n

Once X' is known, we obtain v* from (C5). This completes the proof.

Appendix D

Here we will show that the demonstrated relation between the skew-normal factor model
and the quadratic factor model generalizes to the multiple factor case.

Proposition 3 Letn" have a Q-dimensional skew-normal distribution, defined by (5),
in the canonical form with Q = Iy and o/ = (o; 0 ... 0), with
mean vector and covariance matrix (Montanari & Viroli, 2010)

* 2 *
ll'q* = E("I ) = \/%‘% Vaf('l ) =Q— pqu/q*a

where & = (1 + o/Qa) Q. Let
Q
T* =V A+ > Ay
q=2

Let
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Q
T =v+han, +hni + quﬂqa

q=2

where 1y, ..., No are mutually independent N(0, 1) variables. Then, for any o, V¥,
M, - A, there exist constants v, Ais, A2 A2, ..., Ao Such that E(T"™®) = E(T®) for
k=12 3.

Proof. Without loss of generality we set v = 0 and A] = 1. Note that nj has a one-
dimensional skew-normal distribution with parameters (0, 1, o), and nz, q=2,...,0,are
N(, 1) distributed. Moreover, 17, .. ,nQ are mutually independent. Let T = nl and
To = v+ A11M; + Ai2ni. From Proposition 1 we know that for any o, there exist v, Ay,
L1z, such that E(Tj*) = E(T¥) for k = 1, 2, 3. Let v, A;1, Ai2 have these values. Then
E(T*) = E(13) = E(Ty) = E(T) holds.
We have

E(T"%) =E(T3* + 215 (T* = Tp) + (I" — T})°)
=E(T*2)+2E(T*) (1" —1T5) + E(T" — T5)*

Z 7\‘*2

where we used the independence of T; and T* — T in the second step, and
E(T* —T;) = 0 and E(T3?) = E(T?) in the thlrd step. We set A, = A, forg =2, ..., Q.
Then an analogous expansion of E(T?) shows that E(T*?) = E(T").
‘We have

E(T) =E(T3? 4+ 3T5%(T" — Ty) + 314 (I" — I3)* + (T" = Ty)°)
= E(T) +3E(T)E(T — 1)) + 3E(T)E(T* — T)* + E(T* — T})®

o
= E(T3) + 3E(Ty) (Z xj) ,

q=2

where we used the 1ndependence of Ty and T* — T in the second step, and
E(T* —T}) = 0,E(T* — T})* = 0,E(T?) = (T*) and E(T;) = E(T,) in the third step. As
above, an analogous expansion of E(T%) shows that E(T*>) = E(T?). This completes the
proof. O
As in the univariate case, the full converse result of Proposition 3 does not hold, but a
partial converse result is possible under a condition on the skewness of T. This result is
omitted here.



